Chapter 2: Motion in One Dimension

1. Physical Quantities

- **Scalar Quantities**: Have only magnitude. *Examples*: Mass, time, speed, energy, distance.
- **Vector Quantities**: Have both magnitude and direction. *Examples*: Velocity, displacement, acceleration, force.

2. Rest and Motion

- **Rest**: No change in position w.r.t. surroundings.
- **Motion**: Change in position w.r.t. surroundings.
- One-Dimensional Motion: Movement in a straight line (rectilinear motion).

3. Distance vs. Displacement

Distance	Displacement
Total path covered	Shortest straight path between initial and final positions
Scalar	Vector
Depends on path	Path-independent Path-independent
Always ≥ displacement	Can be < or = distance

4. Speed

- **Definition**: Distance per unit time.
 - Speed = Distance / Time
- Types:
 - o **Uniform Speed**: Equal distance in equal time.
 - o Non-uniform Speed: Unequal distances in equal time.
 - o **Instantaneous Speed**: Speed at a particular instant.
 - Average Speed: Total distance / Total time.

5. Velocity

- **Definition**: Displacement per unit time.
 - Velocity = Displacement / Time
- Vector quantity
- Types:
 - o **Uniform Velocity**: Equal displacement in equal time & constant direction.
 - o **Non-uniform Velocity**: Displacement or direction changes.
 - o **Instantaneous Velocity**: Velocity at a specific moment.
 - o Average Velocity: Total displacement / Total time.

6. Speed vs. Velocity

Speed	Velocity
Scalar	Vector
Based on distance	Based on displacement
Always positive	Can be positive/negative/zero

7. Acceleration

- **Definition**: Rate of change of velocity.
 - a = (v u) / t
- Unit: m/s²
- Vector quantity
- Types:
 - o Uniform Acceleration: Equal change in velocity per time interval.
 - o Non-uniform Acceleration: Unequal change in velocity.
 - o Retardation (Negative Acceleration): Velocity decreases with time.

8. Motion Under Gravity

- Constant acceleration due to gravity:
 - $g = 9.8 \text{ m/s}^2$
- **Falling Body**: Acceleration = +g
- **Rising Body**: Retardation = -g

9. Graphical Representation

• Displacement–Time Graph:

Slope = Velocity

- Velocity-Time Graph:
 - Slope = Acceleration
 - Area under curve = Displacement
- Acceleration–Time Graph:
 - Area under curve = Change in velocity

10. Equations of Motion (for uniform acceleration)

- 1. v = u + at
- 2. $s = ut + \frac{1}{2}at^2$
- 3. $v^2 = u^2 + 2as$

Where:

- u: initial velocity
- v: final velocity
- a: acceleration
- s: displacement
- t: time